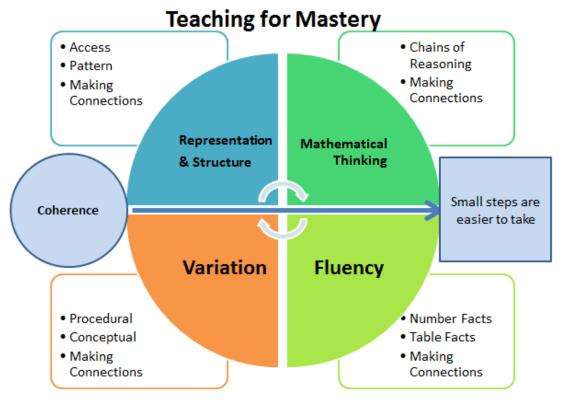
Rush Common Maths Policy

Introduction

At Rush Common School we use a mastery approach to the teaching and learning of Maths.


The 2014 National Curriculum states:

The expectation is that most pupils will move through the programmes of study at broadly the same pace.

Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content.

Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.

Five Big Ideas¹

1. NCETM

Our teaching for mastery is underpinned by the **NCETM's 5 Big Ideas**. Opportunities for **Mathematical Thinking** allow children to make chains of reasoning connected with the other areas of their mathematics. A focus on **Representation and Structure** ensures concepts are explored using concrete, pictorial and abstract representations; children actively look for patterns as well as specialising and generalising whilst problem solving. Coherence is achieved through the planning of small connected steps to link every question and lesson within a topic. Teachers use both procedural and conceptual **Variation** within their lessons and there remains an emphasis on **Fluency** with a focus on number and times table facts.

Teaching Principles

1. Teachers believe in the importance of Maths and that the vast majority of children can succeed in learning Maths in line with national expectations.

2. The whole class is taught Maths together, with no differentiation by acceleration to new content. We do not group children by ability. The learning needs of individuals are addressed through careful scaffolding, questioning and appropriate rapid intervention where necessary, to provide the appropriate support and challenge.

3. The reasoning behind mathematical processes is emphasized. Teacher/pupil interaction explores how answers were obtained as well as why the method worked and what might be the most efficient strategy.

4. Precise mathematical language is used by teachers so that mathematical ideas are conveyed with clarity and precision. We value 'Maths talk' and children get lots of opportunity to talk about and evaluate their Maths during lessons. Children are encouraged to speak in full sentences and are given stem sentences to assist them with this.

5. Conceptual variation and procedural variation are used in teaching. This helps to present the Maths in ways that promote deep, sustainable learning. Conceptual variation is where the concept is varied and examples are shown of what that concept is and isn't (for example a triangle or a quarter.) Procedural variation is where different procedures and/or representations are used to bring about understanding. For example, teachers may collect several solutions for a problem (some right, some wrong) before guiding the class towards the most efficient method. It also involves highlighting the essential features of a concept or idea through varying the non-essential features. Procedural variation provides the opportunity to focus on relationships, not just the procedure to make connections between problems using one problem to work out the next.

6. Sufficient time is spent on key concepts to ensure learning is well developed and deeply embedded before moving on.

Lesson Design

1. Lessons are sharply focused with one new objective introduced at a time.

2. Potential misconceptions are identified in advance and strategies to address them planned. Key questions are planned, to challenge thinking and develop learning for all pupils. Mistakes are valued and used to move learning forward.

3. Independent practice includes starting with a core task. Tasks include reasoning, problem solving and higher-order thinking activities. Children who require more practice will be given consolidation activities at an appropriate challenge level. Pupils who grasp concepts rapidly are challenged through being offered rich and sophisticated problems.

4. The use of high quality materials and tasks (White Rose, Maths No Problem NRICH, NCETM Mastery Assessment materials) to support learning and provide access to the mathematics is integrated into lessons.

5. There is regular interchange between concrete/contextual ideas and their abstract/symbolic representation.

6. Making comparisons is an important form of developing deep knowledge. The questions "What's the same, what's different?" are often used to draw attention to essential features of concepts. E.g. What is a triangle? What it isn't... What it is..

7. Formative assessment is carried out throughout the lesson; the teacher regularly checks pupils' knowledge and understanding and adjusts the lesson accordingly. This forms part of the mastery learning instructional process.

Calculation

Introduction:

Children are introduced to the processes of calculation through practical, oral and mental activities. As they begin to understand the underlying ideas, they develop ways of recording to support their thinking and calculation methods, so that they develop both **conceptual understanding** and **fluency** in the fundamentals of mathematics. Whilst interpreting signs and symbols involved with calculation, orally in the first instance, children use both manipulatives as well as pictorial representations (potentially as part of a **Concrete-Pictorial-Abstract – CPA – approach**) to support their mental and written methods of calculation. As children's mental methods are strengthened and refined, they begin to work more efficiently, which will support them with using succinct written calculation strategies as they are developed.

From Early Years to Year 1:

There are fundamental concepts that it is important for children to develop an early understanding of as building blocks to future learning in maths, including that linked to calculation. A selection of the skills include:

=

- Ordinality 'the ordering of numbers in relation to one another' e.g. (1, 2, 3, 4, 5...)
- Cardinality 'understanding the value of different numbers' e.g. (7 = 2000 17 = 2000 + 2000 14 =
- Equality 'seven is the same total as four add three' e.g.

- One-to-one correspondence – e.g.

Conservation of number – 'recognising that a value of objects are the same, even if they are laid out differently' – e.g.

Concept of zero

Counting on and back from any number – e.g. 'five add three more totals eight'

'ten take away three totals seven'

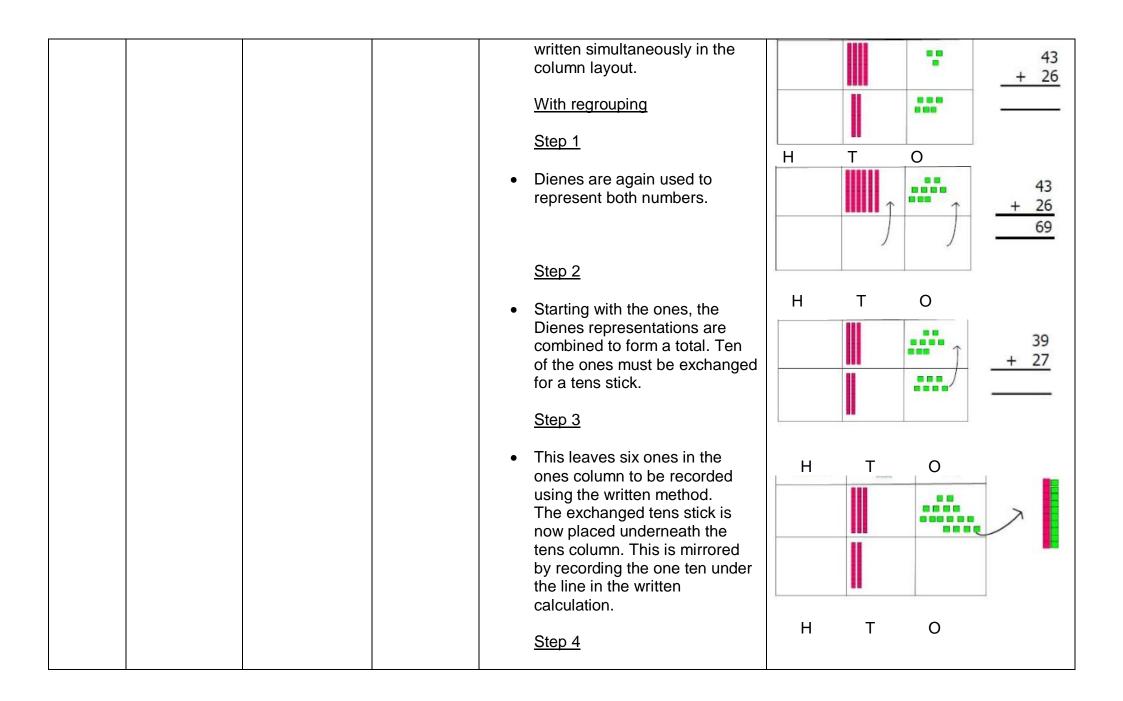
The ability to calculate mentally forms the basis of all methods of calculation and has to be maintained. In the 2018 national Key Stage 1 SATs tests, every one of the named mental maths strategies below was assessed, whilst many also featured in a less explicit manner in the Key Stage 2 SATs tests, hence highlighting the need for each method to be taught explicitly. A good knowledge and 'feel' for numbers, is the product of structured practice through progression in relevant practical maths experiences alongside visual representations.

By the end of Year 6, children should be equipped with efficient mental and written calculation methods, which they use fluently. Decisions about when to progress should always be based on the security of pupils' understanding and their readiness to move ahead to the next stage. At whatever stage in their learning, and with whatever written method is being used, children's strategies must still be underpinned by a secure understanding and knowledge of number facts that can be recalled fluently with flexibility.

The overall aims are that when children leave primary school they:

- Are able to recall number facts with fluency, having developed conceptual understanding through being able to visualise key ideas such as those related to place value, through experience with practical equipment and visual representations;
- Make use of diagrams (including the bar model) and jottings to help record / reason through stages of thinking when using mental methods that generate more information than can be kept in their heads;
- Have an efficient, reliable, written method of calculation for each number operation that they can apply with confidence when undertaking calculations that they cannot carry out mentally;
- Are able to make connections between all four number operations, understanding how they relate to one another, as well as how the rules and laws of arithmetic can be applied.

Addition:


Mental calculation strategies for addition and subtraction: All mental calculation strategies need to be taught explicitly using a Concrete – Pictorial – Abstract (CPA) approach in every year group, for example, using decimals in Key Stage 2. The following ideas can be adjusted so that they are accessible to all children. The NCETM, 2015, state that, 'a pupil really understands a mathematical concept, idea or technique if he or she can represent it in a variety of ways.' **Doubles:** 8 + 8 = 16 **Near doubles:** 6 + 7 = 13 **Number bonds:** 7 + 3 = 10 8 + 8 is 6 + 7 is connected to commutative 8 X 2 with 7 + 6**Partitioning:** 14 + 12 = 26 **Adjusting:** 16 + 9 = 25 **Bridging:** 7 + 5 = 12 To begin: 16 + 10 = 26Then: 26 - 1 = 25To begin: 7 + 3 = 10Then: 10 + 2 = 12RECESSER

	David has 10	ifference: 10 – 6 =	e.g ord To The be has	ordering: $8 + 7 + 2 = 17$ g. calculating numbers in a different der begin: $8 + 2 = 10$ en: $10 + 7 = 17$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Stage 1:	Counting Count in ones to and across 100 forwards and backwards starting from 0, 1 and other numbers. Count in multiples of two, five and ten using a counting stick	Mental maths strategies & linked concepts <u>Explicitly teach</u> every mental <u>maths strategy</u> detailed above. Pupils use apparatus to explore addition as the inverse of subtraction.	Rapid recall Rapid recall of all pairs of numbers totalling numbers up to 20. Use structured apparatus – i.e. Numicon, tens frames, abaci, etc.	understanding Combining two groups:	models/images to support conceptual and varied fluency 123 + 567890 3 + 2 = 5 'Three plus two is the same as five' 'Eight add two more makes ten'

	set up as a number track.	'Four add one is the same as five'		Whole / part-whole model: • The concept of a whole / part- whole model is introduced.	Four add one more is the same as five' Tens frame Bar model Part/whole model
Stage 2:	Continue practising above skills. Count in steps of 2, 3 and 5 forwards and backwards to and from zero using a counting stick set up as a number line. Count in tens from any number – link to coins in a	Explicitly teach every mental maths strategy detailed above. Round numbers to the nearest 10, for example, by illustrating on a number line that is drawn on a folded strip of paper.	Recall addition facts for all numbers to 20.	 Counting on from the largest number: Children begin to use number lines to support their own calculations, initially counting on from the largest number in ones before beginning to work more efficiently. Reordering calculations to apply use of mental maths strategies: Children reorder 'strings' of numbers to apply their understanding of mental maths strategies, including doubles and number bonds, 	Number line with all numbers labelled $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12$ 18 + 5 $18 \ 19 \ 20 \ 21 \ 22 \ 23 \ 24$ $18 \ 19 \ 20 \ 21 \ 22 \ 23$ Questions such as: 'How might I rearrange these to find the total?' are asked.

piggy bank as well as a number square.	 e.g. 6 + 7 + 4 reordered to 6 + 4 = 10 and then 10 + 7 = 17. Jottings are used to help keep track of thinking. Whole / part-whole model: The concept of a whole / part- whole model is reinforced and extended.
	 Tens and ones + ones Continue to develop understanding of partitioning and place value. Represent the numbers using Dienes.
	 Children to draw the base 10 e.g by drawing rectangles for tens and squares for ones or lines for 10s and dot/crosses for ones. Add the ones and then the tens.

Tens and ones + tens and ones • Continue to develop understanding of partitioning and place value. Represent the numbers using Dienes. 41+8 41+8 1+8=9 40+9=49 40+9=49 41+8 40+9=49 41+8 40+9=49 41+8 40+9=49 41+8 40+9=49 41+8 40+9=49 41+8 40+9=49 41+8 40+9=49 41+8 40+9=49 41+8 40+9=49 41+8 40+9=49 41+8 40+9=49 41+8 40+9=49 41+8 41+8 40+9=49 41+8 40+9=49 41+8 40+9=49 41+8 40+9=49 41+8 41+8 40+9=49 41+8 41+8 40+9=49 41+8 41+8 40+9=49 41+8 40+9=49 41+8 41+8 40+9=49 41+8 41+8 41+8 40+9=49 41+8 41+8 41+8 41+8 40+9=49 41+8 41+8 41+8 40+9=49 41+8
• Children to represent the Dienes in a place value chart. $36 + 25$
Column Addition Without regroupingStep 1• Dienes are used to represent both numbers.
Step 2 H T O Starting with the ones, the Dienes are combined to form a total. The resulting totals are

				Finally, the tens are combined to give a resulting total of tens which is recorded in the written calculation.	$H T O + \frac{39}{27}$ $-\frac{60}{1}$ $-\frac{39}{1}$ $-\frac{60}{1}$ $+\frac{39}{27}$ $-\frac{66}{1}$ $-\frac{66}{1}$ $-\frac{66}{1}$
Stage 3:	Continue practising above skills. Count forward and backwards from 0 in multiples of 4, 8, 50 and 100. Count on 10 or 100 from any two- digit number. Count up and down in	Reinforce partitioning and bridging through multiples of 10, plus adjusting when adding 11 or 9. Use structured apparatus to understand that subtraction undoes addition and link with	Connect pairs totalling ten to pairs of multiples of 10 totalling 100.	Column addition Continue to make links with earlier models and images, including the number line. Use of place value counters to add HTO + TO and HTO + HTO When there are 10 ones in the 1s column, we exchange for 1 ten. When there are 10 tens in the 10s column we exchange for 1 hundred.	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

a countingoperations.ostick asrbefore, whilstvderivingonumber facts.3	Recall pairs of two-digit numbers with a total of 100, i.e. 32 + ? = 100.	Children to represent the counters in a place value chart, circling when they make an exchange. The addition is then shown using the formal written method.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
---	---	--	--

Stage 4:	Continue	Bridging	As above.	Column addition							
	practising	through 60 for	Use known								
	previous	time, i.e. 70	facts and	Continue to make links with earlier							
	skills. Count	minutes = 1	place value	models and images, including the							
	forwards and	hour and 10	to derive	number line.							
	backwards	minutes.	new ones,		33	356 +	2435	5			
	from 0 in	Rounding any	i.e. 'If I know	Use of place value counters to add							
	multiples of 6,	number to the	8 + 3 = 11, I	ThHTO + HTO and ThHTO + ThHTO		Th		н	-	г	0
	7, 9, 25 and	nearest 10, 100	also know						<u> </u>		
	1000 using	or 1000.	0.8 + 0.3 =			000	• '			0	
	counting	Rounding	1.1 and						0	2	
	sticks,	numbers with	8/100 +			88			0		000
	number lines,	one decimal	3/100 =								
	number	place to nearest	11/100.'								
	squares, etc.	whole number.	Sums and							<u>"</u>	
	Count up and	Explore inverse	differences								
	down in	as a way to	of pairs of				T 1		Ŧ	0	1
	tenths,	derive new	multiples of				Th	H	Т	0	
	hundredths	facts and to	10, 100 or				3	3	5	6	
	and simple	check accuracy	1000.				5	5	5	0	-
	fractions	of answers.	Addition			+	2	4	3	5	
	using models		doubles of			· ·		· ·		-	-
	and images,		numbers to				5	7	9	1	
	plus Dienes /		100.						1		-
	pixie Dienes		Pairs of								
	equipment		fractions								
	and a		totalling one.	Continue using bar models to				1,185	5	4	05
	counting stick.			represent calculations	1			1,100			

Stage 5:	Count forwards and	Use apparatus and knowledge	Continue to practise	Continue to use previous strategies to add numbers with more than 4 digits		3.45 + 4.14	1
	backwards in steps of	of place value to add	previous stage and	Use place value counters to add	Ones	 Tenths 	Hundredths
	powers of 10 for any given number up to one million.	decimals, i.e. 3.4 + 2.5 = 5 + 0.9	make links between known facts and addition	decimals	80		
	Continue to count forwards and backwards in simple fractions. Count forward and backwards in appropriate	Reorder increasingly complex calculations, i.e. 1.7 + 2.8 + 0.3 = 1.7 + 0.3 + 2.8 Compensating - i.e. 405 + 399 \rightarrow add 400 and	pairs for fractions, percentages and decimals Doubles and halves of decimals, i.e. half of 5.6, double		+	3.45 4.14	
	decimals and percentages.	then subtract one.	3.4. Sums and differences of decimals, i.e. 6.5 + 2.7				_
Stage 6:	Continue to practise previous skills. Count forwards and backwards in simple fractions, decimals and percentages.	Bridging through decimals, i.e. 0.8 + 0.35 = 0.8 + 0.2 + 0.15 using empty number lines. Partitioning using near doubles, i.e. 2.5 + 2.6 = 5 + 0.1	Using children's confident recalling of basic facts to 20/100 and deriving facts using place value, make links between decimals,	Continue to use previous strategies to add numbers with more than 4 digits. Use previous strategies to add decimals.			

Reorder fractions and percentages. $4.7 + 5.6 - 0.7$ i.e. $1 + 19$ as $4.7 10 + 190$ $0.7 + 5.6 = 4 +$ $100 + 1900$ Question: What do you notice?
--

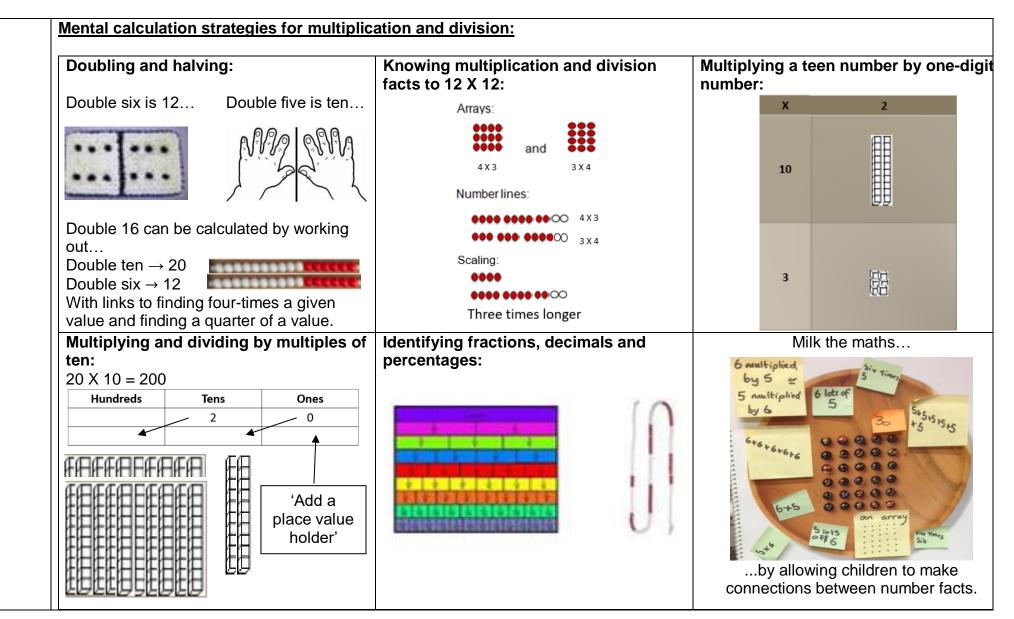
Subtraction:

	Counting	Mental strategies	Rapid Recall	Written calculation and appropriate models and images to support conceptual understanding		
Stage 1:	Count in ones to and across 100, forwards and backwards starting from 0, 1 and other numbers. Count in multiples of two, five and ten.	Explicitly teach every mental maths strategy detailed above. Pupils use apparatus to explore addition as the inverse of subtraction: 	Rapid recall of subtraction facts for numbers up to 10. Use structured apparatus, i.e. Numicon, tens frames, abaci etc.	 Subtraction as taking away from a group: Teachers model how to remove counters/objects and count back on a number track. This is a precursor to use of a fully numbered number-line. Whole / part-whole model: The concept of a whole / part- whole model is introduced. Children begin to use number lines to support their own calculations, initially counting back in ones before beginning to work more efficiently. 	Five minus two totals three Five minus two totals three Fix take away two leaves four Six take away two leaves four Five minus two totals three Fix take away two leaves four Fix take away two leaves Fix take away two leaves	

Stage 2:	Continue practising above skills. Count in steps of 2, 3 and 5, forwards and backwards to and from zero. Count in	Explicitly teach every mental maths strategy detailed above.	Recall subtraction (and addition) facts for all numbers to 20.	Taking away: Children continue to use numbered lines and also draw their own number lines Finding the difference: • Teachers model how to find the	13-5=8 $13-5=8$ $13-5=8$ $13-5=8$ $13-5=8$ $13-5=8$ $13-5=8$ $13-5=8$ $13-5=8$ $13-5=8$ $13-5=8$ $13-5=8$ $13-5=8$
	tens from any number – link to coins in a piggy bank as well as a number			difference when two numbers are relatively 'close together.' Column method using Dienes (no	48-7 10s 1s 10s 1s
	square.			exchange)	
				Children to represent Base 10 pictorially.	$\frac{10s}{11}$

	Progressing to column method or children could count back.	4 8 - 7 4 1
	Column method using Dienes (with exchange)	$41 - 26$ $10s 1s \qquad 10s 1s \qquad 1$
	Represent the Dines pictorially, remembering how to show the exchange.	$\frac{10s}{14tQ} = \frac{1s}{15}$
	method. Children must understand that when they have exchanged the 10 they still have 41 because 41 = 30 + 11	$-\frac{34}{26}$ 15

Stage 3:	Continue practising above skills. Count from 0 in multiples of 4, 8, 50 and 100. Count on and back by 10 or 100 from any two digit number. Link to counting stick counting forwards and backwards	Reinforce partitioning and bridging through multiples of 10, plus adjusting when subtracting 11 or 9. Use structured apparatus to understand that subtraction undoes addition and link with inverse number operations.	Connect subtractions from ten to subtractions from multiples of 10 totalling 100.	 When teaching children about reduction, highlight the importance of only partitioning one number. 	Subtraction by partitioning with use of manipulatives 167 - 24 = 143 20 4 In either order To begin: $167 - 20 = 147$ Then: $147 - 4 = 143$
	flexibly. Count up and down in tenths – linking to visual image.		numbers from 100 i.e. ? = 100 - 78	Column method using place value counters	234 - 88


	Represent the place value counters pictorially, remembering how to show the exchange.	Finding the difference on a number line:
	Formal column method. Children must understand what has happened when they have crossed out the digits.	2 ² 3 ¹ 4 <u>- 88</u> <u>6</u>
	Finding the difference: Children should note that finding the difference is often the most efficient way of solving a subtraction problem when two numbers are close together.	72 - 56 = $44 + 10 + 2$ $56 60 70 72$ $44 + 2$ $66 70 72$

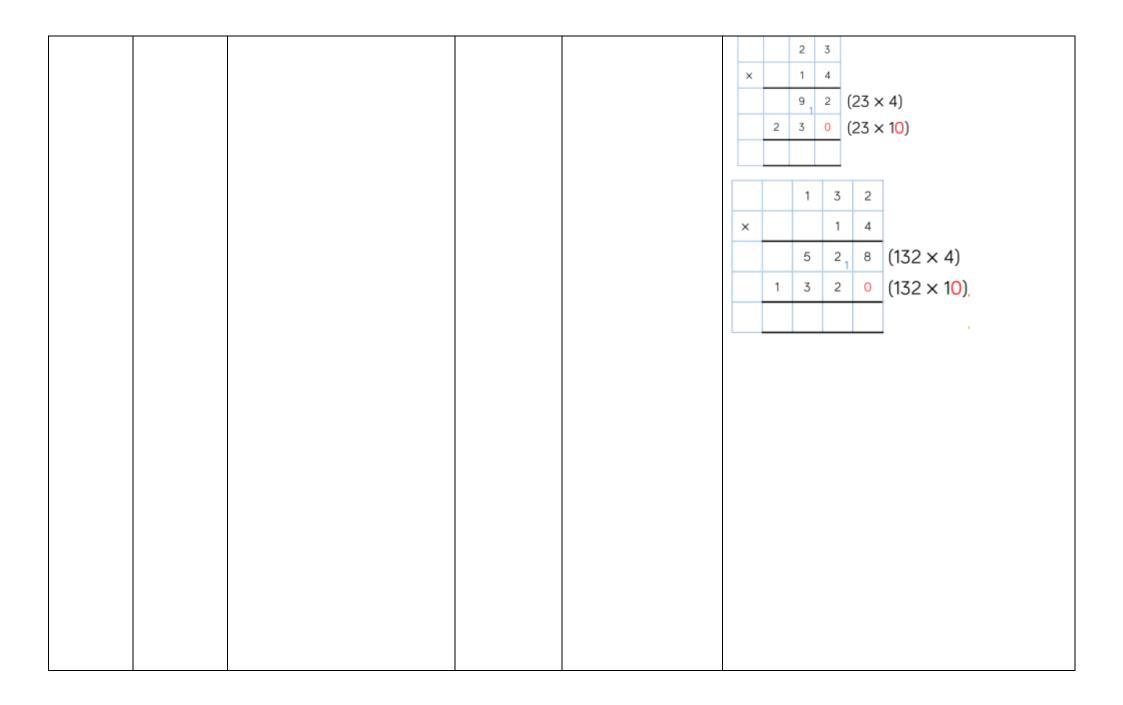
Stage 4:	Continue practising of previous skills. Count	Bridging through 60 for time, i.e. 70 minutes = 1 hour and 10 minutes	As above. Use known facts and place value	Column method using place value counters (no exchange)						
	forwards and		to derive		Th	н		Т		0
	backwards from 0 in	number to the nearest 10, 100 or	new ones, i.e. 'If I know		€€Ø	ø			Ø	111
	multiples of 6, 7, 9, 25 and 1000 using counting sticks, number lines, number squares, etc. Count up and down in	1000. Rounding numbers with one decimal place to nearest whole number. Explore inverse as a way to derive new facts and to check accuracy of answers.	11 - 3 = 8, I also know 1.1 - 0.3 = 0.8 and 8/100 - 3/100 = 5/100.' Sums and differences of pairs of multiples of 10, 100 or			-	Th 3 1 2	4 8	5	0 4 4 0
	tenths, hundredths		1000. Subtraction	Column method using		1,000s	100s	10	s	1s
	and simple fractions using models and images, i.e.		of fractions totalling 1, i.e. $1 - 0.3 =$ 0.7	place value counters (with exchange)		000	888			000
	Dienes /					1,000s	100s	, 10	s	, 1s
	Pixie Dienes								-	
	equipment, counting stick, ITPs.									

						1,000s	100s	10s	
Stage 5:	Count forwards and backwards in steps of powers of 10 for any given number up to one million. Continue to count forwards and backwards	Use apparatus and knowledge of place value to subtract decimals, i.e. $3.8 - 2.5 = 1.3$ Reorder increasingly complex calculations, i.e. 1.7 - 0.5 - 0.7 = 1.7 - 0.7 - 0.5. Compensating – i.e. 405 - 399 \rightarrow	Continue to practise previous stage and make links between known facts and addition pairs for fractions, percentages and decimals.	Finding the difference: Finding the difference continues to be highlighted where the two numbers are close together – using a number line on a strip of paper. Continue to use previous strategies to subtract numbers with more than 4 digits • Use place value counters to subtract decimals	Use the plac 4.33 – 2.14		Tenths	find th	o 1 ₃ 6 7

	in simple fractions. Count forward and backwards in appropriate decimals and percentages.	subtract 400 and then add 1.	Doubles and halves of decimals, i.e. half of 5.6, double 3.4. Sums and differences of decimals, i.e. 6.5 + 2.7		4.33 - <u>2.14</u>
Stage 6:	Continue to practise previous skills. Count forwards and backwards in simple fractions, decimals and percentages.	Bridging through decimals, i.e. 1.5 – 0.8 = 1.5 – 0.5 then – 0.3 using empty number line.	Using children's confident recalling of basic facts to 20/100 and using place value, make links between decimals, fractions and percentages. 19 - 1 = 190 - 10 = 1900 - 100 = 1.9 - 0.1 = Question: What do you notice?	Continue to use previous strategies to subtract numbers with more than 4 digits. Use previous strategies to subtract decimals.	

Multiplication:

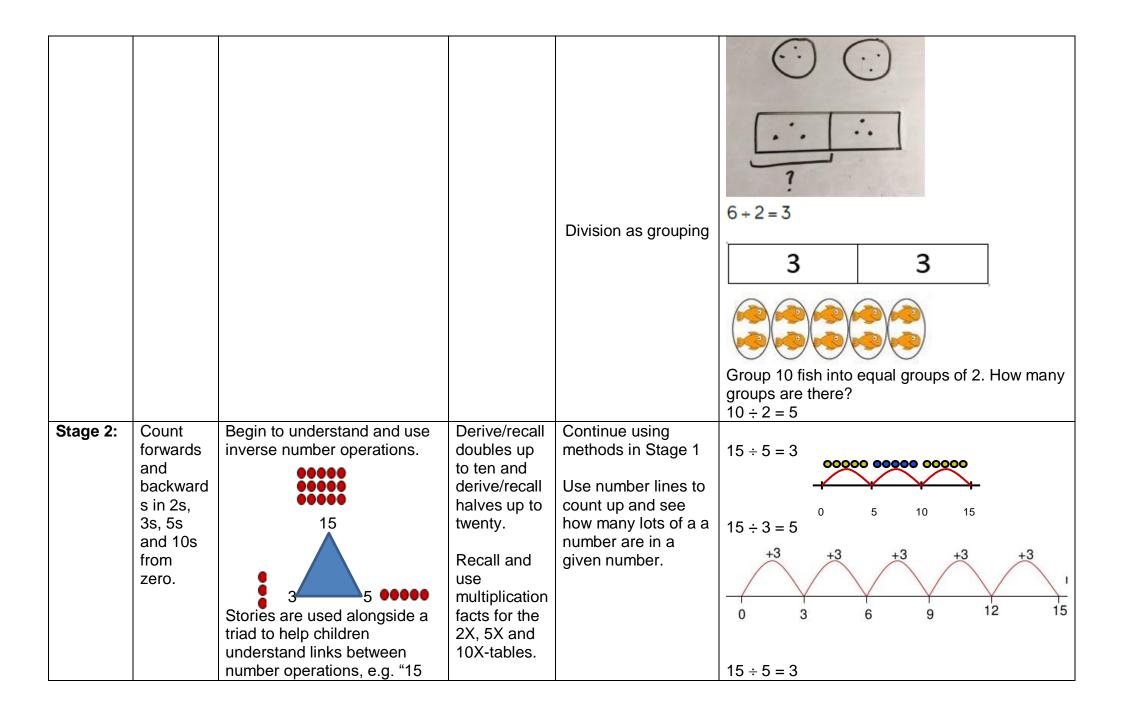
	Counting	Mental strategies	Rapid recall	Written calculation support conceptual	and appropriate models and images to understanding
Stage 1:	Count forwards and backwards in 2s, 5s and 10s	Doubling up to six and then ten whilst using related models and images.	Derive/recall doubles up to five and derive/recall halves up to ten.	Developing early conceptual understanding of multiplication (grouping):	Use objects, pictorial representations and arrays to show the concept of multiplication:
Stage 2:	Count forwards and backwards in 2s, 3s, 5s and 10s from zero.	Begin to understand and use inverse number operations: 10 2 5 Stories are used alongside a triad to help children understand links between number operations, e.g. "There are five pencils in two packs, which means that there are ten pencils altogether." Doubling is reinforced using a whole/part-whole model:	Derive/recall doubles up to ten and derive/recall halves up to twenty. Recall & use multiplication facts for the 2X, 5X and 10X-tables. Learn what happens when a number is multiplied by zero or one.	 Understanding multiplication as repeated addition: Investigate multiplication as repeated addition, so that the law of cummutativity is understood. Children to represent the practical resources in a picture and use a bar model 	3×4 4 + 4 + 4 There are 3 equal groups, with 4 in each group. 3×4 4 + 4 + 4 There are 3 equal groups, with 4 in each group. 3×4 $3 \times$


			3 × 4 = 12
			4 + 4 + 4 = 12
		 Arrays: Represent with apparatus and pictorially. Connect related facts with both array and repeated addition 	5 X 3 3 X 5 and
		images. Repeated addition on the number line linked with manipulatives:	$6 \times 4 = 24$
			So: 'Six multiplied by four'or 'Six taken four times.'

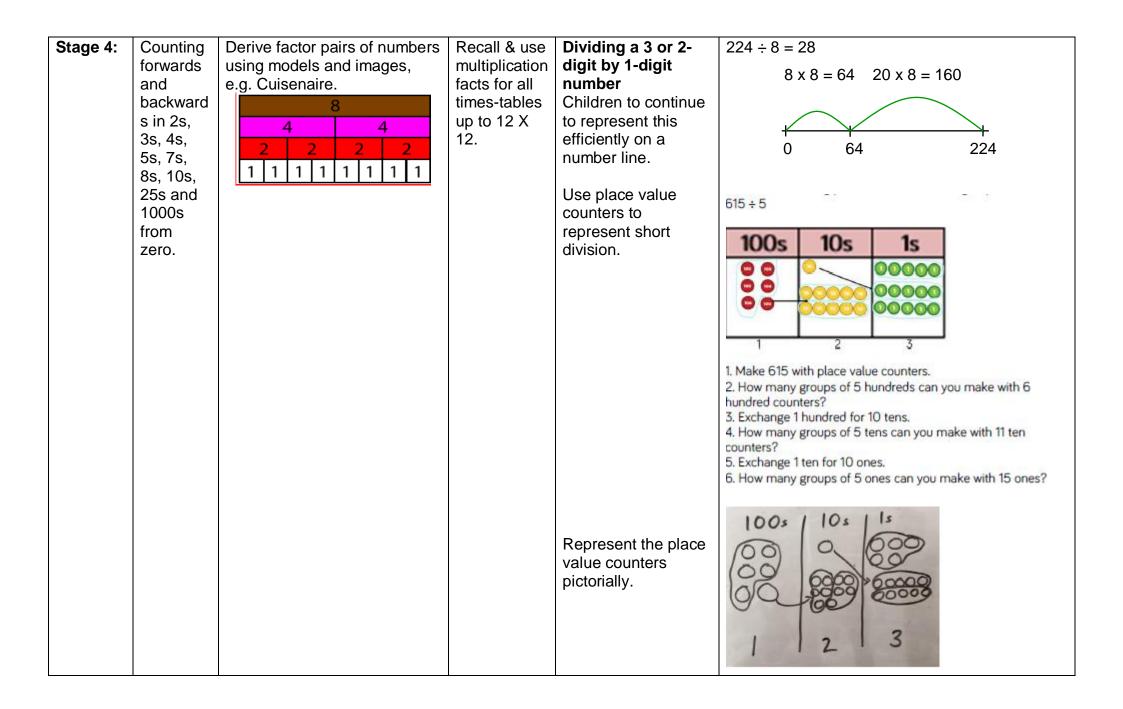
Stage 3: Counting forwards and backwards in 2s, 3s, 4s, 5s, 8s and 10s from zero.	Use doubling to make connections between the 2X, 4X and 8X-tables. Understand that multiplication can be undertaken by partitioning numbers, e.g. 12 X 4 = 10 X 4 + 2 X 4	Recall and use multiplication facts for the 2X, 3X, 4X, 5X, 8X and 10X tables.	Partition to multiply using Numicon and Dienes.	
Count up and down in tenths.	Introduce the structure of scaling: e.g. Find a ribbon hat is 4 times as long as the blue ribbon		Children to represent the concrete manipulatives pictorially. Children to show the steps they have taken.	10x 4 = 40 $5x 4 = 20$ $4x 15$ $10x 4 = 40$ $5x 4 = 20$ $40 + 20 = 60$ A number line can also be used $10x 4 = 40$

		Formal column method with place value counters (Dienes can also be used.)	3 X 23	1 s 000 000 000	
		Children to represent the counters pictorially. Children to record what they are doing to show understanding.	10s 00 00 6 3×23 20 3 23	$ \begin{vmatrix} ls \\ 000 \\ 000 \\ $	
			<u>× 3</u> 69		

Stage 4:	Counting forwards and backwards in 2s, 3s, 4s, 5s, 7s,	Derive factor pairs of numbers using models and images, e.g. Cuisenaire 1 and 12 2 and 6 3 and 4	Recall & use multiplication facts for all times-tables up to 12 X 12.	Relate multiplying a 3 or 2-digit by 1-digit number with arrays to support using a written method:	Relate multiplying a 3/2-digit by 1-digit number, whilst refining the written notation used. 114 X 2 = 228
	As, 3s, 7s, 8s, 10s, 25s and 1000s from zero. Count up and down in tenths and		12.		
	hundredths	Use reordering to multiply three numbers. Children learn about the associative law: (9 X 5) X 10 = (10 X 5) X 9			$114 X 2 =$ $100 X 2 = 200$ $10 X 2 = 20$ $4 X 2 = 8$ $= 228$ 114 $\frac{x 2}{228}$
				Use place value counters to support written multiplication.	Hundreds Tens Ones 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100


Stage 5:	Counting forwards and backwards in 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, 10s, 25s	Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.	Recall & use multiplication facts for all times-tables up to 12 X 12.	Children use Dienes to represent the area model of multiplication, which will enable them to see the size and scale linked to multiplying.	23×22
	and 1000s from zero.	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} $		Children will then move on to representing multiplication more abstractly with place value counters. They then progress to the formal written method: Discuss the importance of zero as a place holder.	44 X 32 X X X X X 40 4 X X X X 40 4 X X X X 120 120 X X X X 120 120 X X X X X 120 X X X X X 120 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

Stage 6:	Consolidate all previous counting, including forwards and backwards in fractions.	Perform mental calculations, including with mixed numbers and operations.	Recall & use multiplication facts for all times-tables up to 12 X 12.	Continue to use previous strategies to multiply 2 digit numbers by up to 4 digit numbers. Use place value counters to support multiplying decimals by 1 digit.	1.212 X 3
				Progressing to written method.	3.6×4 $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$


Division:

	Counting	Mental strategies	Rapid recall	Written calculation and appropriate models and images to support conceptual understanding	
Stage 1:	Count forwards and backward s in 2s, 5s and 10s	Doubling up to six and then ten whilst using related models and images.	Derive/recall doubles up to five and derive/recall halves up to ten.	Developing early conceptual understanding of division as grouping and sharing:	Use objects, pictorial representations and arrays to show the concept of division as grouping and sharing.
				Division as sharing	
				Represent the sharing pictorially.	

		children are asked to get into three groups and find out that there are five people in each group."		Use the bar model to support division by sharing	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Stage 3:	Counting forwards and backward s in 2s, 3s, 4s, 5s, 8s and 10s from zero.	Use doubling to make connections between the 2X, 4X and 8X-tables. Understand that multiplication can be undertaken by partitioning numbers, e.g. 12 X 4 = 10 X 4 + 2 X 4 Introduce the structure of scaling: e.g. Find a ribbon that is 4 times as long as the blue ribbon.	Recall & use multiplication facts for the 2X, 3X, 4X, 5X, 8X and 10X tables.	Dividing a 2-digit by 1-digit number, representing this efficiently on a number line: Sharing using place value counters.	Children use an empty number line to chunk efficiently. $96 \div 6 = 16$ $6 \times 6 = 36$ $10 \times 6 = 60$ 40 36 $96Conceptual understanding can be providedthrough use of a bead string to highlight thechunks.$

	Children to represent the place value counters pictorially.	42 + 3 = 14 10s 1s 10s 1s 10s 1s 0 0 0 0 0 10s 1s 0
	Children to be able to make sense of the place value counters and write calculations that show the process.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Stage 5:	Counting forwards and backward s in 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, 10s, 25s and	Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.	Recall & use multiplication facts for all times-tables up to 12 X 12.	Dividing a 4/3/2- digit by 1-digit number, Division using place value counters	4892 ÷ 4
	1000s from zero.			progressing to short division Remainders should be interpreted in the following ways when long division is used: • as whole numbers • as fractions • through rounding in an appropriate way to the context	1 2 3 4 4 8 9 1 4 4 8 9 1 4 4 8 9 1 4 4 8 9 1 4 4 8 9 1 4 4 8 9 1 4 1 2 3 1 1 2 2 3 1 1 1 2 2 3 4 4 8 9 1 1

Stage 6:	Consolid ate all previous counting, including forwards and	Perform mental calculations, including with mixed numbers and different number operations.	Recall & use multiplication facts for all times-tables up to 12 X 12.	Dividing a 4/3/2- digit by 2/1-digit number using long division. Using place value counters	1000s 100s 10s 1s 0 0 0 0 1000s 100s 10s 1s 1000s 100s 10s 1s 1000s 100s 10s 1s 1000s 100s 10s 1s 1000s 10s 1s 1000s 10s 1s 100s 10s 1s
	backward s in fractions.			Use of visual representations – like the ones opposite – remain important.	1000s 10s 1s After exchanging the hundred, we have 14 tens. We can group 12 tens into a group of 12, which leaves 2 tens. 12 12 14 12 12
					1000s 10s 1s Image: Second Se